第7卷 第12期 1987年12月

边带和频作用在宽频带激光频率 转换中的贡献限制

丘志仁 蔡希洁 王之江 (中国科学院上海光学精密机械研究所)

捉 要

本文从单色平面波无吸收损耗三频耦合波方程,小信号近似出发,计算了 KDP、ADP、BBO、 LiIO₃ 和 LiNbO₃ 等晶体(1.064 µm 激光倍频、三倍频、四倍频)的光谱和角度接收半宽 ΔA₄、Δθ_{PW},从而为 选择宽频带激光频率转换所用的晶体及匹配类型提供了依据。给出了宽频带锁模激光倍频方程,并得出 窄频带下二次谐波加强因子 2^{N3+N},表明边带和频作用对锁模激光脉冲具有更大的贡献。

关键词: 晶体的光谱和角度接收半宽;边带和频过程。

一、引言

由于宽频带激光在传输和核聚变激光打靶中具有一系列优点,特别是短波长激光与等 离子体能更有效地作用^[11],因此,提高高功率宽频带钕玻璃激光倍频和三倍频效率将具有特 殊意义。文献[2]曾对 OD*A、KDP 等晶体 I 类匹配宽频带钕玻璃激光倍频作过研究,但 对其边带和频作用贡献限制并没有文章很好讨论。文献[3]报道了多纵模激光二次谐 波产 生具有加强因子 2 N² – N,与所有基波功率集中在单纵模上相对加强是 2 N-1 N,从中可看 出边带和频作用在多纵模倍频中的贡献。但此加强因子是对非锁模激光而言,本文还将给 出锁模情况下的加强因子,表明了和频作用在微微秒脉冲多纵模激光倍频中更加突出^[4]。

二、非线性晶体光谱和角度接收半宽

从三个单色平面波在非线性晶体中的耦合波方程,忽略晶体吸收损耗、小信号近似 下^[53].

$$I_{2\omega} \propto \operatorname{sinc}^2 \psi_d \qquad \left(\psi_d = \frac{1}{2} \, \varDelta k_d L_d \right)_{\mathbf{o}} \tag{1}$$

$$I_{3\omega} \propto \operatorname{sinc}^2 \psi_t \qquad \left(\psi_t = \frac{1}{2} \, \varDelta k_t L_t\right)_{\circ}$$

$$\tag{2}$$

其中, $\Delta k = k_3 - k_1 - k_2$ 是波矢失配,L为晶体厚度。当 $\psi = \psi_0 = 1.396$ 时, sinc² $\psi_0 = 0.5$,即 半功率点。

收稿日期: 1986年1月23日; 收到修改稿日期: 1987年3月19日

7卷

考虑 $\Delta k = \left(\frac{1}{\lambda_1} + \frac{1}{\lambda_2}\right) 2 \pi n_3(\lambda_1, \lambda_2, \theta) - \frac{2\pi}{\lambda_1} n_1(\lambda_1, \theta) - \frac{2\pi}{\lambda_2} n_2(\lambda_2, \theta)$ 式的一级近似, 由波长和角度失配引起的波矢失配是(假设对中心波长 $\lambda_{10}, \lambda_{20}$ 的和频是相位匹配的):

$$\Delta k = \left(\frac{\partial k_3}{\partial \lambda_1} - \frac{\partial k_1}{\partial \lambda_1}\right) (\lambda_1 - \lambda_{10}) + \left(\frac{\partial k_3}{\partial \lambda_2} - \frac{\partial k_2}{\partial \lambda_2}\right) (\lambda_2 - \lambda_{20}) + \frac{\partial \Delta k}{\partial \theta} (\theta - \theta_0)$$

$$= A_1 \cdot \Delta \lambda_1 + A_2 \cdot \Delta \lambda_2 + \beta \cdot \Delta \theta_0$$
(3)

报

其中, A1、A2 是波长失配因子, B是角度失配因子。

1. 倍频情况

1. I类匹配
$$A_1 = A_9 = -\frac{2\pi}{\lambda_1} \left(\frac{\partial n_{10}}{\partial \lambda_1} - \frac{1}{2} \frac{\partial n_{2e\theta}}{\partial \lambda_2} \right), \beta = \frac{4\pi}{\lambda_1} \frac{\partial n_{2e\theta}}{\partial \theta}$$
。
2. II 类匹配 $A_1 = \frac{2\pi}{\lambda_1} \left[\frac{n_{10} - n_{2e\theta}}{\lambda_1} - \left(\frac{\partial n_{10}}{\partial \lambda_1} - \frac{1}{2} \frac{\partial n_{2e\theta}}{\partial \lambda_2} \right) \right],$
 $A_2 = \frac{2\pi}{\lambda_1} \left[\frac{n_{1e\theta} - n_{2e\theta}}{\lambda_1} - \left(\frac{\partial n_{1e\theta}}{\partial \lambda_1} - \frac{1}{2} \frac{\partial n_{2e\theta}}{\partial \lambda_2} \right) \right], \beta = \frac{2\pi}{\lambda_1} \left(2 \frac{\partial n_{2e\theta}}{\partial \theta} - \frac{\partial n_{1e\theta}}{\partial \theta} \right)$ 。
2. 三倍频情况
1. I类匹配 $A_1 = \frac{2\pi}{\lambda_1} \left[\frac{n_{10} - n_{3e\theta}}{\lambda_1} - \left(\frac{\partial n_{20}}{\partial \lambda_1} - \frac{1}{3} \frac{\partial n_{3e\theta}}{\partial \lambda_3} \right) \right],$
 $A_2 = \frac{8\pi}{\lambda_1} \left[\frac{n_{20} - n_{3e\theta}}{\lambda_1} - \left(\frac{\partial n_{20}}{2\partial \lambda_2} - \frac{1}{3} \frac{\partial n_{3e\theta}}{\partial \lambda_3} \right) \right], \beta = \frac{6\pi}{\lambda_1} \frac{\partial n_{3e\theta}}{\partial \theta}$ 。
2. II 类匹配 $(O_{2\omega} + e_{1\omega} \rightarrow e_{3\omega}) A_1 = \frac{2\pi}{\lambda_1} \left[\frac{n_{1e\theta} - n_{3e\theta}}{\lambda_1} - \left(\frac{\partial n_{3e\theta}}{\partial \lambda_1} - \frac{1}{3} \frac{\partial n_{3e\theta}}{\partial \lambda_3} \right) \right],$
 $A_2 = \frac{8\pi}{\lambda_1} \left[\frac{n_{20} - n_{3e\theta}}{\lambda_1} - \left(\frac{\partial n_{20}}{2\partial \lambda_2} - \frac{1}{3} \frac{\partial n_{3e\theta}}{\partial \lambda_3} \right) \right], \beta = \frac{2\pi}{\lambda_1} \left(3 \frac{\partial n_{3e\theta}}{\partial \theta} \right)$ 。
2. II 类匹配 $(O_{2\omega} + e_{1\omega} \rightarrow e_{3\omega}) A_1 = \frac{2\pi}{\lambda_1} \left[\frac{n_{1e\theta} - n_{3e\theta}}{\lambda_1} - \left(\frac{\partial n_{3e\theta}}{\partial \lambda_1} - \frac{1}{3} \frac{\partial n_{3e\theta}}{\partial \lambda_3} \right) \right],$
 $A_2 = \frac{8\pi}{\lambda_1} \left[\frac{n_{20} - n_{3e\theta}}{\lambda_1} - \left(\frac{\partial n_{20}}{2\partial \lambda_2} - \frac{1}{3} \frac{\partial n_{3e\theta}}{\partial \lambda_3} \right) \right], \beta = \frac{2\pi}{\lambda_1} \left(3 \frac{\partial n_{3e\theta}}{\partial \theta} - \frac{\partial n_{1e\theta}}{\partial \theta} \right)$ 。
 $\mathcal{M}(3)$ 式, 我们便可求出晶体角度和光谱 接 胶 半 宽 \mathcal{A}_{FW} , $\mathcal{A}_{A_{4x}}$, $\mathcal{A}_{A_{4x}}$, $\mathcal{A}_{A_{4x}}$, $\frac{\partial \theta}{\partial \lambda_1} \Big|_{\lambda_1 = \lambda_{10}}^{\lambda_1 = \lambda_{10}}^{\lambda_1 = \lambda_{10}} \frac{\partial \theta}{\partial \lambda_1} \Big|_{\lambda_1 = \lambda_{10}}^{\lambda_1 = \lambda_{10}}^{\lambda_1 = \lambda_{10}} \frac{\partial \theta}{\partial \lambda_1} \Big|_{\lambda_1 = \lambda_{10}}^{\lambda_1 = \lambda_{10}}$

$$\begin{split} L \cdot \Delta\theta_{FW} &= 4\psi_0 / |\beta|, \\ L \cdot \Delta\lambda_{A_1} &= 4\psi_0 / |A_1|, \\ L \cdot \Delta\lambda_{A_2} &= 4\psi_0 / |A_2|, \\ L \cdot \Delta\lambda_A &= 4\psi_0 / |2A_1| (I 类匹配倍频) \\ \frac{\partial\theta_m}{\partial\lambda_4} &= -A_i / \beta (i=1, 2)_0 \end{split}$$

表1给出了 KDP、ADP、 β -BaB₂O₄、LiIO₃ 和 LiNbO₈ 等晶体对 1.064 μ m 激光倍频、三倍频、四倍频情况的角度和光谱接收半宽,非线性耦合系数 $k = \frac{\pi}{\lambda_1} (n_1 n_2 n_3)^{-1/2} \cdot \frac{(d_{eff})_{max}}{\varepsilon_0}$ ^[5]等参数值(角度均指在晶体内值)。

从1表可看出一块非线性晶体的频率转换性能好坏,特别是对宽频带钕玻璃激光频率 转换的适用性。现讨论如下:

a)除 I 类匹配倍频 (包括四倍频)外,两混频光的光谱接收半宽及匹配角对两混频光的 波长变化是不同的,而且晶体光谱和角度接收半宽均与晶体长度 L 成反比 (90°匹配, $\Delta \theta_{FW}$ 与 $L^{1/2}$ 成反比; λ -反射点^[10]处, $\Delta \lambda_{4}$ 与 $L^{\frac{1}{2}}$ 成反比), 这里的 $\Delta \lambda_{4}$ 是 R. C. Miller^[11] 定义的

			suppry with		1 10.11.000	IVE INCORES I	10m (0), (7),	(0). 11-1.00		· · ·
Crystals	Types		L•Δλ _{A1} cm•Å	$L \cdot \varDelta \lambda_{A_2} \ \mathrm{cm} \cdot \mathrm{\AA}$	$L \cdot \Delta \theta_{FW}$ cm · mrad	<i>∂θ_m/∂λ</i> 1 mrad/Å	$\partial heta_m/\partial \lambda_2$ mrad/Å	$\partial heta / \partial \lambda_1$ mrad/Å	<i>K</i> 10− ⁶ cm/V	0 m
KDP	doubling	I	423	423	1.13	0,00267	0.00267	0.00533	0.831	41.2
		п	58.0	44.9	2.19	0.0378	-0.0488	0.0462	1.12	59.1
	tripling	I	23.0	10.5	0.698	-0.0304	0.0663	0.000567	0.923	47.3
		II	13.8	18.3	1.06	-0.0764	-0.0577	-0.0121	1,13	58.4
	quadrupling	I	2.85	2.85	1.12	-0.393	-0.393	-0.785	2,41	76.8
ADP	doubling	I	312	312	1.03	0.00328	0.00328	0,00657	0.828	41.7
		II	48.8	42.5	2.16	0.0442	-0.0507	0.0572	1.06	61.5
	tripling	I	21.0	9.38	0.644	-0.0307	-0.0687	0.000978	0.919	47.8
		II	12.7	16.6	1.02	-0,0808	-0.0617	-0.0106	1.08	60.0
	quadrupling	I	2.51	2.51	1.43	-0.570	-0.570	-1.14	2.41	80.5
$\operatorname{BBO}(m{ heta}-\operatorname{BaB}_{2}\operatorname{O}_{4})$	doubling	I	39.2	39.2	0.512	-0.0131	-0.0131	-0.0261	3.99	22.8
		II	195	23.8	0.800	-0.00411	-0.0336	-0.00335	3.11	32.8
	tripling	I	4.57	9.79	0.261	-0.0267	0.0570	-0.0109	3.70	31.3
		II	7.35	7.71	0,348.	-0.0451	-0.0474	-0.0130	2.67	38.6
· · · · · · · · · · · · · · · · · · ·	quadrupling	I	1,45	1.45	0.165	-0.113	-0.113	-0.227	5.73	₩ 47.6
LiIO3	doubling	I	12.8	12.8	0.342	-0.0268	-0.0268	-0.0536	5.77	30.0
	tripling	I	3.36	1.47	0.185	-0.0551	0,126	-0.0288	8.51	47.2
LiNbO ₃	doubling	r	3.22	3 .2 2	2. 50	-0.776	-0.776	-1.55	8.09	83.7

.

Table 1 Derivatives of match-angle with respect to wavelength, spectral and angular acceptance half-width. All quantities apply within the crystals. Refractive indexes from (6), (7), (8), $\lambda_1 = 1.064 \,\mu\text{m}$

200

边带和频作用在宽频带激光频率转换中的贡献限制

1065

12期

两倍。Y.S. Liu^[12]曾用可调窄谱线钕玻璃激光测定过 KDP: $L \cdot \Delta \lambda_A = 72.5 \text{ Å} \cdot \text{cm}$, LiIO₈: $L \cdot \Delta \lambda_A = 8.2 \text{ Å} \cdot \text{cm}$ 。表1的值虽然偏大(小信号、平面波近似所致),但其还是反映晶体匹配性能的。需指出:在入射基波功率增大,高转换效率情况下,数值计算耦合波方程可知 $\Delta \lambda_A$ 、 $\Delta \theta_{FW}$ 均会降低。

b) 虽然 LiNbO₃ 和 LiIO₃ 的 K 值较大, 但它们破坏阀值低、色散大, 从而只用于低功率 密度激光, 要求 L 较大, 光谱和角度接收半宽相应较小(90°匹配, $\Delta \theta_{FW}$ 较大例外), 不适合 宽频带激光混频。然而, 虽然 KDP、ADP、 β -BaB₂O₄ 的 K 值较小, 但它们破坏阀值高, 色 散小, 在高功率密度下, L 值要求较短, 光谱和角度接收半宽相应较大。 因而适合于高功 率宽频带激光混频。 其中 KDP 稍优于 ADP 晶体。 KDP 晶体 I 类比 II 类匹配要佳。而 β -BaB₂O₄ 晶体 II 类优于 I 类匹配倍频, 且并不差于 KDP I 类匹配, 因为 β -BaB₂O₄ 的 K 值比 KDP 大几倍, 在同一功率密度下所需的晶体厚度就小几倍^[50]。

c)随着波长的变短,晶体色散相应增大,光谱接收半宽减小,对三倍频、四倍频,不论用 KDP、β-BaB₂O₄晶体的 I 类还是 II 类匹配,其光谱接收半宽已很小。因而对激光半宽为 Δλ_F=60~100 Å 的宽频带钕玻璃激光三倍频、四倍频均不能获得高效转换。

d) 对于单频激光 II 类匹配混频, o、e 光的最佳光子数比为 1:1^[5]; 就宽频带激光 II 类 倍频而言, ΔΔ₄₁(o 光)>ΔΔ₄₁(e 光),特别是用 β-BaB₂O₄ 晶体 ΔΔ₄₁≫ΔΔ₄₁, 图 1 中阴影区内的 光子参加高效频率转换,为了保证参加高效作用的光子数比为 1:1, 就必须让 e 光能量大 于 o 光能量,使高效转换区的光子能充分作用。因为阴影区外的光子位相失配较大,对转换 率贡献极小。而当一宽频带钕玻璃激光与1.064 μm 单频激光混频时,用 II 类匹配,宽频带 激光应采用 o 偏振射 λ 晶体。 倘若 ΔΔ_F(激光半宽)>ΔΔ₄₁(o 光),那么,要求宽频带激光能 量要大于单频激光能量; ΔΔ_F≪ΔΔ₄₁ 时,两束光的能量比要求将趋于 1。

Fig. 1 Spectral distributions of fundamental frequency

三、宽频带激光耦合波方程

在宽频带激光混频中,考虑到同一频率的光可以由多种频率之间的和(差)频产生这一 特点,已得到非锁模宽频带激光倍频方程^[9]

$$\begin{cases} \frac{dE_{1}(\omega_{i})}{dz} = -\frac{1}{2} \gamma_{1} E_{1}(\omega_{i}) - iK \sum_{j} E_{1}^{*}(\omega_{j}) E_{2}(\omega_{i}, \omega_{j}) e^{-iAk(\omega_{i}, \omega_{j})z}, \\ \frac{dE_{2}(\omega_{i}, \omega_{j})}{dz} = -\frac{1}{2} \gamma_{2} E_{2}(\omega_{i}, \omega_{j}) - iK \left(1 - \frac{1}{2} \delta_{ij}\right) E_{1}(\omega_{i}) E_{1}(\omega_{j}) \\ \cdot \left[e^{iAk(\omega_{i}, \omega_{j})\cdot z} + e^{iAk(\omega_{j}, \omega_{i})\cdot z}\right]_{0} \end{cases}$$
(5)

1066

由此方程所推出的多纵模激光倍频加强因子 $\frac{2N-1}{N}$ 与文献[2]一致。

对于锁模激光,各纵模的相位是恒定的,因此频率 $\omega_i, \omega_j = \omega_{i'}, \omega_{j'}$ 的和频($\omega_i \neq \omega_{i'}, \omega_{j'}$) $\omega_8 = \omega_i + \omega_j = \omega_{i'} + \omega_{j'}$ 贡献项是同相相加的。故得锁模宽频带激光倍频方程为

$$\begin{cases} \frac{dE_{1}(\omega_{i})}{dz} = -\frac{1}{2} \gamma_{1}E_{1}(\omega_{i}) - iK \sum_{j} E_{1}^{*}(\omega_{j})E_{2}(\omega_{i}, \omega_{j})e^{-i\Delta k(\omega_{i}, \omega_{j}) \cdot s} \\ \frac{dE_{2}(\omega_{i}, \omega_{j})}{dz} = -\frac{1}{2} \gamma_{2}E_{2}(\omega_{i}, \omega_{j}) - iK \sum_{j'=1}^{N} \sum_{i'>j'}^{N} \delta_{i+j,i'+j'} \\ \cdot \left(1 - \frac{1}{2} \delta_{i'j'}\right) \cdot E_{1}(\omega_{i'})E_{1}(\omega_{j'}) \left[e^{i\Delta k(\omega_{i'}, \omega_{j'}) \cdot s} + e^{i\Delta k(\omega_{j'}, \omega_{j'}) \cdot s}\right]_{0} \end{cases}$$

$$(6)$$

其中假设各纵模初相位 $\phi_n \equiv 0$, n = 1, …, $N_{\circ} \gamma_1$, $\gamma_2 \beta$ 别是晶体对基频、倍频光的吸收系数。在窄频带(激光半宽 $\Delta \lambda_F \ll \Delta \lambda_A$)等振幅多纵模激光情形、无吸收、小信号近似下,二次谐波功率:

$$P_{2\omega} \propto K^2 L^2 (2N^3 + N) / 3_{\circ} \tag{7}$$

与所有基波功率集中在单纵模情形相比,二次谐波加强因子 $(2N^2+1)/3N$,当 $N \to \infty$ 时,加强因子趋于无穷大,由此看出边带和频过程对锁模脉冲频率转换有更大的加强作用。但必须指出,这里假设了各纵模初相位是相同的,否则每一对边带和频贡献项均含有折扣因子 $\cos(\phi_m - \phi_n)$,并且这里是无吸收损耗,小信号近似的结果。

文献[2]中曾讨论过二次谐波光谱特性,但没有指出非锁模与锁模激光两种情况的差别。当 ΔA₄≫ ΔA⊮时,二次谐波和和频过程都完好相位匹配。如这时基波光谱是方形的,则 二次谐波谱特点如图 2(a)(锁模),(b)(非锁模)。

而实际情况基波光谱很接近高斯或抛物线型,其谐波光谱决定于很多因素、诸如基波光 谱、晶体光谱接收半宽 Δ_A 、基波功率密度、晶体长度等。J. Comly 等^[4]指出抛物型基波光 谱,非锁模倍频加强因子在 $N \gg$ 时将从 2 下降到 1.5。文献 [9] 已对非锁模宽频带钕玻璃激 光($\Delta_{k_F}=60$ Å)和单频激光的倍频作过计算并和实验符合得很好,采用 I 类 KDP 晶体(8 cm 厚, $\Delta_{A}=70$ Å),获得 44.5% 的外转换频率($I_{10}=230$ MW/cm²),而且 $\Delta_{2\omega}$ (FWHM) = 23 Å,转换效率比同一基波功率密度下单频倍频略高,这充分体现了和频作用在此情况下 ($\Delta_{A} > \Delta_{R}$)贡献的重要性。

Fig. 2 Spectral distributions of second harmonics (fundamental frequency longitudinal number N=4)

本工作中曾与中山大学物理系覃文骅同志作过有益讨论,特此致谢。

- [1] 邓锡铭等; 《光学学报》, 1983, 3, No. 2 (Mar), 97~101。
- [2] D. J. Taylor; J. Appl. Phys., 1975, 46, No. 9 (Sep), 3988~3991.
- [3] G. E. Francois; Phys. Rev., 1966, 143, No. 2 (Mar), 597~600.
- [4] W. H. Glenn; IEEE. J. Quant. Electron., 1969, QE-5, No. 6 (Jun), 284~290.
- [5] R. S. Craxton; IEEE. J. Quant. Electron., 1991, QE-17, No. 9 (Sep), 1771~1782.
- [6] F. Zernike; J. O. S. A., 1964, 54, No. 10 (Oct), 1215~1220.
- [7] K. Kato; IEEE. J. Quant. Electron., 1986, QE-22, No. 7 (July), 1013~1014.
- [8] D. N. Nikogosyan; Sov. J. Quant. Electron., 1977, 7, No. 1 (Jan), 1~13.
- [9] 覃文骅,蔡希洁等;《光学学报》,1987,7, No. 2 (Feb), 151~158。
- [10] N. P. Barnes et al.; Appl. Optics, 1976, 15, No. 3 (Mar), 696~699.

Contribution limitation of side-band sum-frequency processes to laser frequency conversion

QIU ZHIREN, CAI XIJIE AND WRNG ZIJIANG (Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

(Received 23 January 1986; revised 19 March 1987)

Abstract

According to the equations of three interacting plane waves (without absorptions and losses) and small-signal approximation, the calculations of spectral and angular acceptance half-widths are done with KDP, ADP, BBO, LiIO₃, LiNbO₃ for frequency doubling, tripling and quadrupling (λ_1 =1.064 μ m), so that we can select crystals used for frequency-conversion in a wide-band Nd: glass laser. The doubling equations for wide-band mode-locked lasers are given. The calculated enhancement factor $\frac{2N^3+N}{3}$ of SH shows that processes of side-band sum-frequency for mode-locked laser pulse are of important roles.

Key Words: Spectral and angular acceptance half-widths of crystals; Side-band sum-frequency processes.